imgboxbg
Your location:
Homepage
/
/
/
Analysis of the market status and development prospects of the lithium battery anode material industry: natural graphite vs. artificial graphite, who has more potential?

Analysis of the market status and development prospects of the lithium battery anode material industry: natural graphite vs. artificial graphite, who has more potential?

  • Categories:Company news
  • Author:
  • Origin:
  • Time of issue:2021-09-22
  • Views:0

(Summary description)The core data of this article: natural graphite and artificial graphite shipments, lithium battery anode material market structure, natural graphite and artificial graphite prices, artificial graphite competition pattern, artificial graphite cost structure

Analysis of the market status and development prospects of the lithium battery anode material industry: natural graphite vs. artificial graphite, who has more potential?

(Summary description)The core data of this article: natural graphite and artificial graphite shipments, lithium battery anode material market structure, natural graphite and artificial graphite prices, artificial graphite competition pattern, artificial graphite cost structure

  • Categories:Company news
  • Author:
  • Origin:
  • Time of issue:2021-09-22
  • Views:0
Information

The core data of this article: natural graphite and artificial graphite shipments, lithium battery anode material market structure, natural graphite and artificial graphite prices, artificial graphite competition pattern, artificial graphite cost structure

Shipment: Artificial graphite grows fast

Artificial graphite is mainly divided into MCMB, soft carbon and hard carbon according to the different processing technology. The artificial graphite anode material is made by calcining needle coke, petroleum coke, pitch coke and other raw materials at a certain temperature, and then pulverizing, grading, and high temperature. It is made by graphitization, and its high crystallinity is formed by high-temperature graphitization; natural graphite is mainly divided into two types: amorphous graphite and flake graphite: 1) Amorphous graphite has low purity, and the graphite interplanar spacing is 0.336 nm, which is mainly hexahedron. Graphite crystal plane ordering structure, that is, the graphite layers are arranged in the order of ABAB..., the orientation of individual crystallites is anisotropic, but after processing, the crystallite particles have a certain interaction with each other, forming a block or granular The particles have isotropic properties; 2) The crystallinity of flake graphite is high, the lamella structure is unitized, and it has obvious anisotropy.

From 2016 to 2020, the shipment volume of artificial graphite and natural graphite increased significantly. Among them, the shipment volume of artificial graphite increased rapidly, with a CAGR of 39.6% and a CAGR of 17.4% for natural graphite. In 2020, the shipment of artificial graphite was 305,000 tons, a year-on-year increase of 46.6%, and the shipment of natural graphite was 57,000 tons, a year-on-year increase of 19.5%.

Price: The price of natural graphite products is low and continues to decline, while the price of artificial graphite is stable

In terms of price, from 2016 to 2021, the price of artificial graphite 340-360mAh/g model remained basically unchanged, and the price of low, medium and high-end natural graphite continued to decline. At the end of March 2021, the price of artificial graphite 340-360mAh/g model is 70 thousand yuan/ton, and the quotations of low-end, mid-range and high-end natural graphite are 24,000 yuan/ton, 36,000 yuan/ton and 55,500 yuan/ton respectively. .

Market share: Artificial graphite is the mainstream, and the share of natural graphite decreases

The structure of natural graphite determines that the volume of graphite changes greatly during the process of lithium intercalation and deintercalation, which leads to the destruction of the graphite layer structure, which in turn causes a large irreversible capacity loss and a severe deterioration in cycle performance. Therefore, natural graphite is in use At times, it is often focused on research on its modification, improving its own structural shortcomings and improving battery performance. With the outbreak of the global power battery market, the comprehensive requirements for material cost, processing performance, energy density, cycle life, fast charge rate and other factors have increased, and artificial graphite has gradually become the first choice for lithium battery anode materials.

From 2016 to 2020, the market share of artificial graphite increased by 15.5 percentage points, and the market share of natural graphite decreased by 9.8 percentage points. In 2020, artificial graphite accounted for 83.6% and natural graphite accounted for 15.6%.

Overview of Artificial Graphite

1. Competitive landscape: Putaili has the largest shipment volume

From the perspective of corporate competition, the overall competitive landscape of anode materials is not much different from that of artificial graphite. The TOP5 companies are Putailai, Shanshan Co., Ltd., Kaijin New Energy, Beterui and Zhongke Star City. Among them, Putailai The largest shipment of artificial graphite, accounting for 21%, followed by Shanshan shares and Kaijin New Energy, market share were 19% and 15%,

2. Production cost: coke raw materials and graphitization processes account for a relatively large proportion

Artificial graphite is divided into three categories: high, medium and low-end according to its performance. The high-end artificial graphite anode material uses needle coke, and the low-end artificial graphite anode material petroleum coke. The cost difference between the two types of artificial graphite is mainly caused by the raw material coke raw materials and graphite. And process complexity.

In the cost of the entire process of artificial graphite, coke-based raw materials and graphitization processes account for a large proportion. The proportions of high-end artificial graphite are about 40% and 48%, respectively, and the proportions of low-end artificial graphite are about 47% and 42%, respectively. %.

The above data refers to the "Analysis Report on Market Prospects and Investment Strategic Planning of China's Lithium Battery Anode Material Industry" by Qianzhan Industry Research Institute. At the same time, Qianzhan Industry Research Institute also provides industry big data, industry research, industry chain consulting, industry map, industry planning, and park planning. , Industrial investment promotion, IPO fundraising feasibility study, prospectus writing and other solutions.

More in-depth industry analysis is available in [Foresight Economist APP], and you can also communicate and interact with 500+ economists/senior industry researchers.

Scan the QR code to read on your phone

Related news

The University of Science and Technology of China has made a major breakthrough in the research of new lithium battery electrode materials 2021-09-22
CCTV,Hefei,October9th(ReporterLiuJun)ThereporterlearnedfromtheUniversityofScienceandTechnologyofChinaonthe9ththattheresearchgroupofProfessorJiXingxingandcollaboratorsoftheschoolhasmadeamajorbreakthroughintheresearchofnewlithium-ionbatteryelectrodematerials:anewlydesignedblackPhosphorouscompositematerialsmakepossiblelithium-ionbatterieswithhighcapacity,fastcharging,andlonglife.Theresultswerepublishedinthe"Science"magazineonOctober9th,Beijingtime.Itisunderstoodthatelectricvehiclesarebecomingmoreandmorepopularinthemarket,butthelongchargingtimeisalsoprohibitive.Traditionalfuelvehiclescanextendarangeof500kilometerswithfullfuelinonlyfiveminutes,whileadvancedelectricvehiclescurrentlyonthemarketneedto"wait"foronehourtoachievethesamerangeextensioneffect.Thedevelopmentofhigh-capacitylithium-ionbatterieswithfastchargingcapabilitieshasalwaysbeenanimportantgoaloftheindustry.Theelectrodematerialisoneofthekeyfactorsthatdeterminethebatteryperformanceindex."Wehopetofindanelectrodematerialthatcannotonlygivetheindustryexpectationsintermsofcomprehensiveperformanceindicators,butalsoadapttotheindustrialbatteryproductionprocess."ProfessorJiHingxingsaid.Theauthorofthethesis,Dr.HongchangJin,introduced:“Energyentersandexitsthebatterythroughthechemicalreactionbetweenlithiumionsandelectrodematerials.Therefore,theconductivityoftheelectrodematerialtolithiumionsisthekeytodeterminingthechargingspeed;ontheotherhand,theelectrodematerialperunitmassorvolumecontainslithiumions.Theamountisalsoanimportantfactor."Accordingtotheintroduction,blackphosphorusisanallotropeofwhitephosphorus.Itsspeciallayeredstructuregivesitstrongionconductivityandhightheoreticalcapacity.Itisanelectrodematerialwithgreatpotentialtomeettherequirementsoffastcharging.However,blackphosphorusispronetostructuraldamagestartingfromtheedgeofthelayeredstructure,andthemeasuredperformanceisfarlowerthantheoreticalexpectations.JiHengxing'steamadoptedan"interfaceengineering"strategytoconnectblackphosphorusandgraphitethroughphosphorus-carboncovalentbonds,whichstabilizedthematerialstructurewhileimprovingtheconductivityoftheblackphosphorus-graphitecompositematerialtolithiumions.Buttheelectrodematerialwillbeenvelopedbychemicalsthatgraduallydecomposeintheelectrolyteduringtheworkingprocess.Somesubstanceswillpreventlithiumionsfromenteringtheelectrodematerial,justlikedustontheglasssurfacehinderslightpenetration.Theresearchteamusedathinpolymergeltomakeadust-proofcoatand"wore"onthesurfaceoftheblackphosphorousgraphitecompositematerialtoallowlithiumionstoentersmoothly."Weusetheconventionalprocessrouteandtechnicalparameterstomaketheblackphosphorouscompositematerialintotheelectrodesheet.Laboratorymeasurementresultsshowthattheelectrodesheetcanrecoverabout80%oftheelectricityafter9minutesofcharging,anditcanstillmaintain90%after2000cycles.Theco-author,XinSenfromtheInstituteofChemistryoftheChineseAcademyofSciencessaid,“Ifmassproductionofthismaterialcanbeachieved,matchingcathodematerialsandotherauxiliarymaterialscanbefound,andthecellstructure,thermalmanagementandOptimizingthedesignoflithiumprotection,etc.,willhopefullyobtainalithium-ionbatterywithanenergydensityof350Wh/kgandafastchargingcapability."Itisreportedthatalithium-ionbatterywithanenergydensityof350watt-hours/kgcanmakethedrivingrangeofanelectriccarcloseto1,000kilometers,whiletheTeslaModelShasadrivingrangeof650kilometersafterbeingfullycharged.Thefastchargingcapabilitywillincreasetheuserexperienceofelectricvehiclestoahigherlevel.
Talking about the anode material of lithium battery 2021-09-22
1.Definition:Thenegativeelectrodematerialisthecarrieroflithiumionsandelectronsinthebatterychargingprocess,andplaystheroleofenergystorageandrelease.Inthecostofthebattery,thenegativeelectrodematerialaccountsforabout5%-15%,anditisoneoftheimportantrawmaterialsforlithium-ionbatteries.2.Asacarrierforlithiumioninsertion,theanodematerialmustmeetthefollowingrequirements:Theinsertionredoxpotentialoflithiumionsinthenegativeelectrodematrixis​​aslowaspossible,closetothepotentialofmetallithium,sothattheinputvoltageofthebatteryishigh;``Alargeamountoflithiuminthematrixcanbereversiblyinsertedanddeintercalatedtoobtainhighcapacity;Duringtheinsertion/de-embeddingprocess,themainstructureofthenegativeelectrodehaslittleornochange;TheredoxpotentialchangeswiththeinsertionandremovalofLishouldbeaslittleaspossible,sothatthevoltageofthebatterywillnotchangesignificantly,andstablecharginganddischargingcanbemaintained;Theinsertioncompoundshouldhavegoodelectronicconductivityandionicconductivity,sothatpolarizationcanbereducedandhighcurrentchargeanddischargecanbecarriedout;ThehostmaterialhasagoodsurfacestructureandcanformagoodSEIwiththeliquidelectrolyte;Theintercalationcompoundhasgoodchemicalstabilityintheentirevoltagerange,anddoesnotreactwithelectrolytesetc.aftertheformationofSEI;Lithiumionshavealargediffusioncoefficientinthemainmaterial,whichisconvenientforrapidcharginganddischarging;Fromapracticalpointofview,thematerialshouldbeeconomicalandenvironmentallyfriendly.Three,carbon-basedanode:Fourth,silicon-basedanodematerialsaremainlydividedintotwocategories:1,crystallinesiliconmaterial;advantage:highcapacity,(4200mAh/g(Li4.4Si)),Disadvantages:Thevolumeexpansioncanreach300%,whichwillnotonlycausetheparticlesoftheSianodetobreak,butalsodamagetheconductivenetworkandbindernetworkoftheelectrode,resultinginthelossofactivematerials,whichwillseriouslyaffectthecycleperformanceofthesiliconanodematerial.TherearethreemainideasforsolvingtheproblemoflargevolumeexpansionofSimaterials:1)Nanometerization:Nanoparticlescanreducethedamageofthematerialparticlesandelectrodescausedbyvolumeexpansion,buttheyarelargerthanthetableandaffectthefirsteffect;andthemethodhasahighcost,acomplicatedprocess,andadifficultpreparation.2)Sicrystalmaterialswithspecialshapes,suchashoneycombmaterialsanddendriticSimaterials,usethedeformationoftheSimaterialitselftoabsorbthevolumechangeduringcharginganddischargingandimprovethecycleperformanceoftheSimaterial;butthecompactiondensityissmall,andtheprocessTheprocessiscomplicatedandthepreparationisdifficult.3)Si/Ccompositematerial,throughthecombinationofSiandgraphitematerial,thegraphitematerialisusedtobufferthevolumechangeoftheSimaterialduringthecycle,soastoimprovethecycleperformanceoftheSimaterial.Althoughtheexpansionspaceisreservedandthecycleperformanceisimproved,thecompactiondensityissmallandtheindustrializationisdifficult.Atpresent,scholarsatCentralSouthUniversityhavepreparedacompositeSianodematerialofsilicon,graphite,carbonnanotubesandpitchbyspraydrying.2,siliconoxidematerialSiliconoxide:Thevolumeexpansionissmall,butthefirsteffectistoolow.ThevolumeexpansionofSiOxmaterialismuchsmallerthanthatofcrystallinesiliconmaterial,butitsexpansionlevelisstillmuchhigherthanthatofgraphitematerials.Therefore,thedevelopmentofSiOxmaterialstillneedstofocusonthevolumeexpansionproblemtoreducethematerialparticlecrushingandpulverizationduringthecycle.,Improvethecyclelifeofthematerial.Therefore,nanoizationisalsoacommonmethodforSiOxmaterials;thereisalsotheuseofhigh-energyballmillingtotreatSiOxmaterials,reducingtheparticlesizeofSiOxmaterials,therebyimprovingthecycleandrateperformanceofthematerial,butthefirstefficiencyofthematerialisonly63%.InordertosubstantiallyimprovetheefficiencyofSiOxmaterialsforthefirsttime,KAISTdevelopedaSi-SiOx-Ccompositestructuresiliconanodematerial.NanoSiparticlesaredispersedinSiOxparticles,andthesurfaceoftheparticlesiscoveredwithalayerofporousCarbonmaterial.Electrochemicaltestsshowthatthematerialhasexcellentelectrochemicalperformance,withareversiblecapacityof1561.9mAh/gat0.06C,afirstefficiencyof80.2%,100cyclesof1C,andacapacityretentionrateof87.9%.5.LithiummetalanodematerialMetallithiumisoneofthemetalswiththelowestdensity.Thestandardelectrodepotentialis-3.04Vandthetheoreticalspecificcapacityis3860mAh/g.Fromthisdata,itissecondonlyto4200mAh/gofsilicon.Applicationareas:Lithium-sulfurbattery(2600wh/kg),lithium-airbattery(11680wh/kg),etc.Lithiummetalbatterieshavehighcapacityperformance,butinuse,duetothepresenceoflithiumdendrites,negativeelectrodeprecipitation,negativenegativesidereactions,whichseriouslyaffectthesafetyofthebattery,itisintheconceptualstageatthisstage.Lithium-sulfurbattery.Sulfurisalsoaverywidespreadelementinnature.Thehigherenergydensity(2600wh/kg)oflithium-sulfurbatteriesmaybethefocusofthenextgenerationoflithiumbatteryresearchanddevelopment.Lithium-airbattery.Lithium-airbatteryhasaveryhighenergydensity(11680wh/kg),whichisclosetotheenergydensityoffuel,andisenvironmentallyfriendly.Thereactionproductiswater.VI.Lithiumtitanateanodemater
What is lithium hydroxide? Introduction to the characteristics and uses of lithium hydroxide 2021-09-22
Lithiumhydroxideisasmallwhitemonocliniccrystal.Lithiumhydroxidehasaspicytasteandstrongalkalinity.Lithiumhydroxideisplacedintheair,itwillabsorbcarbondioxideandmoisture.Itisachemicalsubstancesolubleinwater.Lithiumhydroxideisslightlysolubleinethanolandinsolubleinether.Itisacorrosivesubstance.ThecharacteristicsoflithiumhydroxideLithiumhydroxideisaninorganicsubstancewiththechemicalformulaLiOHandtheEnglishnameLithiumhydroxide.Itisasmallwhitemonocliniccrystalwithaspicytaste,strongalkalinityandcorrosiveness.ThepHofa1mol/Lsolutionisabout14,pKb=-0.04.Itcanabsorbcarbondioxideandmoistureintheair,solubleinwater,slightlysolubleinethanol,andinsolubleinether.Therelativedensityis1.45,themeltingpointis471°C(anhydrous),anditdecomposesat925°C.AvailableinanhydrousandmonohydrateformsUseoflithiumhydroxideLithiumhydroxideisanimportantbasiclithiumsaltproduct.Lithium-basedgreasepreparedfromlithiumhydroxidehastheadvantagesoflongservicelife,oxidationresistance,andhightemperaturestability;lithiumhydroxidecanbeusedasadevelopingagentforspectralanalysis,Lubricant,asanadditiveforalkalinestoragebatteries,lithiumhydroxidecanincreasethestoragecapacityandprolongtheservicelifeofthebattery.Inaddition,lithiumhydroxidehasimportantapplicationsinmetallurgy,atomicenergy,chemicalreagents,aerospace,defenseindustryandotherfields.Itcanbeusedasanabsorbentforcarbondioxideandcanpurifytheairinthesubmarine.Usedtomakelithiumsaltandlithium-basedgrease,electrolyteforalkalinestoragebatteries,lithiumbromiderefrigeratorabsorbingliquid,lithiumsoap(lithiumsoap),lithiumsalt,developer,etc.orasanalyticalreagents;petroleum,chemical,lightindustry,Usedinthenuclearindustry.Whenusedinalkalinestoragebatteries,thealuminumcontentisnotmorethan0.06%,andtheleadcontentisnotmorethan0.01%.Usedasananalyticalreagent,photographicdeveloper,andalsousedinthemanufactureoflithium;itistobeusedasarawmaterialforthepreparationoflithiumcompounds.Itcanalsobeusedinmetallurgy,petroleum,glass,ceramicsandotherindustries.
Tilted graphene structure may promote the development of quantum computing 2021-09-22
Grapheneisamaterialwithextremelylowresistivity.Electronscanefficientlymigrateinthematerial,whichismuchhigherthantherateofelectronsintraditionalsemiconductorsandconductorssuchassiliconandcopper.Thismakesgrapheneveryconductive.Sincegraphenewasdiscoveredin2004,scientistshavebeenlookingforwaystoputthis2Dmaterialintouse.Becauseofitsatomicallythinstructure,coupledwithstrongelectronsandthermalconductivity,ithasshowngreatpotentialinthedevelopmentofelectronicandstoragedevices.Recently,researchersfromBrookhavenNationalLaboratory,Pennsylvaniaandotheruniversitieshavediscoveredthemovementmechanismofelectronsintwodifferentconfigurationsofdouble-layergraphene(carbonintheformofatomicthickness).Inthefuture,itmayprovidenewideasforthedevelopmentofamorepowerfulandsaferquantumcomputingplatform.Normally,computerchipsarebasedonanunderstandingofhowelectronsmoveinsemiconductors,especiallysilicon.However,thephysicalpropertiesofsiliconarereachingalimit,thatis,howsmalltransistorscanbemadeandhowmanycanbeaccommodatedonachip.Ifwecanunderstandhowelectronsmoveonasmallscaleofafewnanometersinthereducedsizeoftwo-dimensionalmaterials,itmaybepossibletounlockanotherwayofusingelectronsforquantuminformationscience.Often,whenamaterialisdesignedtothesesmallscales,reachingasizeofafewnanometers,itwillconfinetheelectronstoaspacewiththesamesizeasitsownwavelength,resultinginchangesintheoverallelectronicandopticalpropertiesofthematerial.ThisprocessiscalledItisquantumconfinement.Forthisreason,researchersusegraphenetostudytheseconfinementeffectsofelectronsandphotons(orlightparticles).Researchersuseauniquegradientalloygrowthsubstratetogrowgraphenewiththreedifferentdomainstructures:singlelayer,Benalstack,andtwisteddoublelayer.Thegraphenematerialisthentransferredtoaspecialsubstrate,allowingtheresearcherstodetecttheelectronicandopticalresonancesofthesystem.Thedetectionresultshows:theelectronmovesbackandforthatthesamefrequencyonthe2Dinterface.Intheconfiguration,thedistancebetweenthetwolayersofmaterialissignificantlyincreased,whichaffectshowelectronsmoveduetotheinteractionbetweenthelayers.Inaddition,tiltingoneofthegraphenelayersby30degreeswillalsoshifttheresonancetoalowerenergy,andtheelectronscanincreasetheinter-layerspacingmovinginit.Inthefuture,researcherswillusetiltedgraphenetomakenewdevices,andonthebasisoftheresultsofthisstudy,observehowtheadditionofdifferentmaterialstothelayeredgraphenestructureaffectsdownstreamelectronicandopticalproperties.
Online Message
图片

Contact Us

Contact Number: +86-731-52653988 E-mail: admin@hnydxny.cn
Contact Us
  • WeChat public account WeChat public account

Copyright © Hunan Yide New Energy Technology Co.,Ltd.        湘ICP备2021013290号

Copyright © Hunan Yide New Energy Technology Co.,Ltd.
湘ICP备2021013290号