imgboxbg
Your location:
Homepage
/
/
/
Tilted graphene structure may promote the development of quantum computing

Tilted graphene structure may promote the development of quantum computing

(Summary description)Grapheneisamaterialwithextremelylowresistivity.Electronscanefficientlymigrateinthematerial,whichismuchhigherthantherateofelectronsintraditionalsemiconductorsandconductorssuchassiliconandcopper.Thismakesgrapheneveryconductive.Sincegraphenewasdiscoveredin2004,scientistshavebeenlookingforwaystoputthis2Dmaterialintouse.Becauseofitsatomicallythinstructure,coupledwithstrongelectronsandthermalconductivity,ithasshowngreatpotentialinthedevelopmentofelectronicandstoragedevices.Recently,researchersfromBrookhavenNationalLaboratory,Pennsylvaniaandotheruniversitieshavediscoveredthemovementmechanismofelectronsintwodifferentconfigurationsofdouble-layergraphene(carbonintheformofatomicthickness).Inthefuture,itmayprovidenewideasforthedevelopmentofamorepowerfulandsaferquantumcomputingplatform.Normally,computerchipsarebasedonanunderstandingofhowelectronsmoveinsemiconductors,especiallysilicon.However,thephysicalpropertiesofsiliconarereachingalimit,thatis,howsmalltransistorscanbemadeandhowmanycanbeaccommodatedonachip.Ifwecanunderstandhowelectronsmoveonasmallscaleofafewnanometersinthereducedsizeoftwo-dimensionalmaterials,itmaybepossibletounlockanotherwayofusingelectronsforquantuminformationscience.Often,whenamaterialisdesignedtothesesmallscales,reachingasizeofafewnanometers,itwillconfinetheelectronstoaspacewiththesamesizeasitsownwavelength,resultinginchangesintheoverallelectronicandopticalpropertiesofthematerial.ThisprocessiscalledItisquantumconfinement.Forthisreason,researchersusegraphenetostudytheseconfinementeffectsofelectronsandphotons(orlightparticles).Researchersuseauniquegradientalloygrowthsubstratetogrowgraphenewiththreedifferentdomainstructures:singlelayer,Benalstack,andtwisteddoublelayer.Thegraphenematerialisthentransferredtoaspecialsubstrate,allowingtheresearcherstodetecttheelectronicandopticalresonancesofthesystem.Thedetectionresultshows:theelectronmovesbackandforthatthesamefrequencyonthe2Dinterface.Intheconfiguration,thedistancebetweenthetwolayersofmaterialissignificantlyincreased,whichaffectshowelectronsmoveduetotheinteractionbetweenthelayers.Inaddition,tiltingoneofthegraphenelayersby30degreeswillalsoshifttheresonancetoalowerenergy,andtheelectronscanincreasetheinter-layerspacingmovinginit.Inthefuture,researcherswillusetiltedgraphenetomakenewdevices,andonthebasisoftheresultsofthisstudy,observehowtheadditionofdifferentmaterialstothelayeredgraphenestructureaffectsdownstreamelectronicandopticalproperties.

Tilted graphene structure may promote the development of quantum computing

(Summary description)Grapheneisamaterialwithextremelylowresistivity.Electronscanefficientlymigrateinthematerial,whichismuchhigherthantherateofelectronsintraditionalsemiconductorsandconductorssuchassiliconandcopper.Thismakesgrapheneveryconductive.Sincegraphenewasdiscoveredin2004,scientistshavebeenlookingforwaystoputthis2Dmaterialintouse.Becauseofitsatomicallythinstructure,coupledwithstrongelectronsandthermalconductivity,ithasshowngreatpotentialinthedevelopmentofelectronicandstoragedevices.Recently,researchersfromBrookhavenNationalLaboratory,Pennsylvaniaandotheruniversitieshavediscoveredthemovementmechanismofelectronsintwodifferentconfigurationsofdouble-layergraphene(carbonintheformofatomicthickness).Inthefuture,itmayprovidenewideasforthedevelopmentofamorepowerfulandsaferquantumcomputingplatform.Normally,computerchipsarebasedonanunderstandingofhowelectronsmoveinsemiconductors,especiallysilicon.However,thephysicalpropertiesofsiliconarereachingalimit,thatis,howsmalltransistorscanbemadeandhowmanycanbeaccommodatedonachip.Ifwecanunderstandhowelectronsmoveonasmallscaleofafewnanometersinthereducedsizeoftwo-dimensionalmaterials,itmaybepossibletounlockanotherwayofusingelectronsforquantuminformationscience.Often,whenamaterialisdesignedtothesesmallscales,reachingasizeofafewnanometers,itwillconfinetheelectronstoaspacewiththesamesizeasitsownwavelength,resultinginchangesintheoverallelectronicandopticalpropertiesofthematerial.ThisprocessiscalledItisquantumconfinement.Forthisreason,researchersusegraphenetostudytheseconfinementeffectsofelectronsandphotons(orlightparticles).Researchersuseauniquegradientalloygrowthsubstratetogrowgraphenewiththreedifferentdomainstructures:singlelayer,Benalstack,andtwisteddoublelayer.Thegraphenematerialisthentransferredtoaspecialsubstrate,allowingtheresearcherstodetecttheelectronicandopticalresonancesofthesystem.Thedetectionresultshows:theelectronmovesbackandforthatthesamefrequencyonthe2Dinterface.Intheconfiguration,thedistancebetweenthetwolayersofmaterialissignificantlyincreased,whichaffectshowelectronsmoveduetotheinteractionbetweenthelayers.Inaddition,tiltingoneofthegraphenelayersby30degreeswillalsoshifttheresonancetoalowerenergy,andtheelectronscanincreasetheinter-layerspacingmovinginit.Inthefuture,researcherswillusetiltedgraphenetomakenewdevices,andonthebasisoftheresultsofthisstudy,observehowtheadditionofdifferentmaterialstothelayeredgraphenestructureaffectsdownstreamelectronicandopticalproperties.

Information

Graphene is a material with extremely low resistivity. Electrons can efficiently migrate in the material, which is much higher than the rate of electrons in traditional semiconductors and conductors such as silicon and copper. This makes graphene very conductive.

Since graphene was discovered in 2004, scientists have been looking for ways to put this 2D material into use. Because of its atomically thin structure, coupled with strong electrons and thermal conductivity, it has shown great potential in the development of electronic and storage devices.

Recently, researchers from Brookhaven National Laboratory, Pennsylvania and other universities have discovered the movement mechanism of electrons in two different configurations of double-layer graphene (carbon in the form of atomic thickness). In the future, it may provide new ideas for the development of a more powerful and safer quantum computing platform.

Normally, computer chips are based on an understanding of how electrons move in semiconductors, especially silicon. However, the physical properties of silicon are reaching a limit, that is, how small transistors can be made and how many can be accommodated on a chip. If we can understand how electrons move on a small scale of a few nanometers in the reduced size of two-dimensional materials, it may be possible to unlock another way of using electrons for quantum information science.

Often, when a material is designed to these small scales, reaching a size of a few nanometers, it will confine the electrons to a space with the same size as its own wavelength, resulting in changes in the overall electronic and optical properties of the material. This process is called It is quantum confinement. For this reason, researchers use graphene to study these confinement effects of electrons and photons (or light particles).

Researchers use a unique gradient alloy growth substrate to grow graphene with three different domain structures: single layer, Benal stack, and twisted double layer. The graphene material is then transferred to a special substrate, allowing the researchers to detect the electronic and optical resonances of the system.

The detection result shows: the electron moves back and forth at the same frequency on the 2D interface. In the configuration, the distance between the two layers of material is significantly increased, which affects how electrons move due to the interaction between the layers. In addition, tilting one of the graphene layers by 30 degrees will also shift the resonance to a lower energy, and the electrons can increase the inter-layer spacing moving in it.

In the future, researchers will use tilted graphene to make new devices, and on the basis of the results of this study, observe how the addition of different materials to the layered graphene structure affects downstream electronic and optical properties.

Scan the QR code to read on your phone

Related news

The University of Science and Technology of China has made a major breakthrough in the research of new lithium battery electrode materials 2021-09-22
CCTV,Hefei,October9th(ReporterLiuJun)ThereporterlearnedfromtheUniversityofScienceandTechnologyofChinaonthe9ththattheresearchgroupofProfessorJiXingxingandcollaboratorsoftheschoolhasmadeamajorbreakthroughintheresearchofnewlithium-ionbatteryelectrodematerials:anewlydesignedblackPhosphorouscompositematerialsmakepossiblelithium-ionbatterieswithhighcapacity,fastcharging,andlonglife.Theresultswerepublishedinthe"Science"magazineonOctober9th,Beijingtime.Itisunderstoodthatelectricvehiclesarebecomingmoreandmorepopularinthemarket,butthelongchargingtimeisalsoprohibitive.Traditionalfuelvehiclescanextendarangeof500kilometerswithfullfuelinonlyfiveminutes,whileadvancedelectricvehiclescurrentlyonthemarketneedto"wait"foronehourtoachievethesamerangeextensioneffect.Thedevelopmentofhigh-capacitylithium-ionbatterieswithfastchargingcapabilitieshasalwaysbeenanimportantgoaloftheindustry.Theelectrodematerialisoneofthekeyfactorsthatdeterminethebatteryperformanceindex."Wehopetofindanelectrodematerialthatcannotonlygivetheindustryexpectationsintermsofcomprehensiveperformanceindicators,butalsoadapttotheindustrialbatteryproductionprocess."ProfessorJiHingxingsaid.Theauthorofthethesis,Dr.HongchangJin,introduced:“Energyentersandexitsthebatterythroughthechemicalreactionbetweenlithiumionsandelectrodematerials.Therefore,theconductivityoftheelectrodematerialtolithiumionsisthekeytodeterminingthechargingspeed;ontheotherhand,theelectrodematerialperunitmassorvolumecontainslithiumions.Theamountisalsoanimportantfactor."Accordingtotheintroduction,blackphosphorusisanallotropeofwhitephosphorus.Itsspeciallayeredstructuregivesitstrongionconductivityandhightheoreticalcapacity.Itisanelectrodematerialwithgreatpotentialtomeettherequirementsoffastcharging.However,blackphosphorusispronetostructuraldamagestartingfromtheedgeofthelayeredstructure,andthemeasuredperformanceisfarlowerthantheoreticalexpectations.JiHengxing'steamadoptedan"interfaceengineering"strategytoconnectblackphosphorusandgraphitethroughphosphorus-carboncovalentbonds,whichstabilizedthematerialstructurewhileimprovingtheconductivityoftheblackphosphorus-graphitecompositematerialtolithiumions.Buttheelectrodematerialwillbeenvelopedbychemicalsthatgraduallydecomposeintheelectrolyteduringtheworkingprocess.Somesubstanceswillpreventlithiumionsfromenteringtheelectrodematerial,justlikedustontheglasssurfacehinderslightpenetration.Theresearchteamusedathinpolymergeltomakeadust-proofcoatand"wore"onthesurfaceoftheblackphosphorousgraphitecompositematerialtoallowlithiumionstoentersmoothly."Weusetheconventionalprocessrouteandtechnicalparameterstomaketheblackphosphorouscompositematerialintotheelectrodesheet.Laboratorymeasurementresultsshowthattheelectrodesheetcanrecoverabout80%oftheelectricityafter9minutesofcharging,anditcanstillmaintain90%after2000cycles.Theco-author,XinSenfromtheInstituteofChemistryoftheChineseAcademyofSciencessaid,“Ifmassproductionofthismaterialcanbeachieved,matchingcathodematerialsandotherauxiliarymaterialscanbefound,andthecellstructure,thermalmanagementandOptimizingthedesignoflithiumprotection,etc.,willhopefullyobtainalithium-ionbatterywithanenergydensityof350Wh/kgandafastchargingcapability."Itisreportedthatalithium-ionbatterywithanenergydensityof350watt-hours/kgcanmakethedrivingrangeofanelectriccarcloseto1,000kilometers,whiletheTeslaModelShasadrivingrangeof650kilometersafterbeingfullycharged.Thefastchargingcapabilitywillincreasetheuserexperienceofelectricvehiclestoahigherlevel.
Talking about the anode material of lithium battery 2021-09-22
1.Definition:Thenegativeelectrodematerialisthecarrieroflithiumionsandelectronsinthebatterychargingprocess,andplaystheroleofenergystorageandrelease.Inthecostofthebattery,thenegativeelectrodematerialaccountsforabout5%-15%,anditisoneoftheimportantrawmaterialsforlithium-ionbatteries.2.Asacarrierforlithiumioninsertion,theanodematerialmustmeetthefollowingrequirements:Theinsertionredoxpotentialoflithiumionsinthenegativeelectrodematrixis​​aslowaspossible,closetothepotentialofmetallithium,sothattheinputvoltageofthebatteryishigh;``Alargeamountoflithiuminthematrixcanbereversiblyinsertedanddeintercalatedtoobtainhighcapacity;Duringtheinsertion/de-embeddingprocess,themainstructureofthenegativeelectrodehaslittleornochange;TheredoxpotentialchangeswiththeinsertionandremovalofLishouldbeaslittleaspossible,sothatthevoltageofthebatterywillnotchangesignificantly,andstablecharginganddischargingcanbemaintained;Theinsertioncompoundshouldhavegoodelectronicconductivityandionicconductivity,sothatpolarizationcanbereducedandhighcurrentchargeanddischargecanbecarriedout;ThehostmaterialhasagoodsurfacestructureandcanformagoodSEIwiththeliquidelectrolyte;Theintercalationcompoundhasgoodchemicalstabilityintheentirevoltagerange,anddoesnotreactwithelectrolytesetc.aftertheformationofSEI;Lithiumionshavealargediffusioncoefficientinthemainmaterial,whichisconvenientforrapidcharginganddischarging;Fromapracticalpointofview,thematerialshouldbeeconomicalandenvironmentallyfriendly.Three,carbon-basedanode:Fourth,silicon-basedanodematerialsaremainlydividedintotwocategories:1,crystallinesiliconmaterial;advantage:highcapacity,(4200mAh/g(Li4.4Si)),Disadvantages:Thevolumeexpansioncanreach300%,whichwillnotonlycausetheparticlesoftheSianodetobreak,butalsodamagetheconductivenetworkandbindernetworkoftheelectrode,resultinginthelossofactivematerials,whichwillseriouslyaffectthecycleperformanceofthesiliconanodematerial.TherearethreemainideasforsolvingtheproblemoflargevolumeexpansionofSimaterials:1)Nanometerization:Nanoparticlescanreducethedamageofthematerialparticlesandelectrodescausedbyvolumeexpansion,buttheyarelargerthanthetableandaffectthefirsteffect;andthemethodhasahighcost,acomplicatedprocess,andadifficultpreparation.2)Sicrystalmaterialswithspecialshapes,suchashoneycombmaterialsanddendriticSimaterials,usethedeformationoftheSimaterialitselftoabsorbthevolumechangeduringcharginganddischargingandimprovethecycleperformanceoftheSimaterial;butthecompactiondensityissmall,andtheprocessTheprocessiscomplicatedandthepreparationisdifficult.3)Si/Ccompositematerial,throughthecombinationofSiandgraphitematerial,thegraphitematerialisusedtobufferthevolumechangeoftheSimaterialduringthecycle,soastoimprovethecycleperformanceoftheSimaterial.Althoughtheexpansionspaceisreservedandthecycleperformanceisimproved,thecompactiondensityissmallandtheindustrializationisdifficult.Atpresent,scholarsatCentralSouthUniversityhavepreparedacompositeSianodematerialofsilicon,graphite,carbonnanotubesandpitchbyspraydrying.2,siliconoxidematerialSiliconoxide:Thevolumeexpansionissmall,butthefirsteffectistoolow.ThevolumeexpansionofSiOxmaterialismuchsmallerthanthatofcrystallinesiliconmaterial,butitsexpansionlevelisstillmuchhigherthanthatofgraphitematerials.Therefore,thedevelopmentofSiOxmaterialstillneedstofocusonthevolumeexpansionproblemtoreducethematerialparticlecrushingandpulverizationduringthecycle.,Improvethecyclelifeofthematerial.Therefore,nanoizationisalsoacommonmethodforSiOxmaterials;thereisalsotheuseofhigh-energyballmillingtotreatSiOxmaterials,reducingtheparticlesizeofSiOxmaterials,therebyimprovingthecycleandrateperformanceofthematerial,butthefirstefficiencyofthematerialisonly63%.InordertosubstantiallyimprovetheefficiencyofSiOxmaterialsforthefirsttime,KAISTdevelopedaSi-SiOx-Ccompositestructuresiliconanodematerial.NanoSiparticlesaredispersedinSiOxparticles,andthesurfaceoftheparticlesiscoveredwithalayerofporousCarbonmaterial.Electrochemicaltestsshowthatthematerialhasexcellentelectrochemicalperformance,withareversiblecapacityof1561.9mAh/gat0.06C,afirstefficiencyof80.2%,100cyclesof1C,andacapacityretentionrateof87.9%.5.LithiummetalanodematerialMetallithiumisoneofthemetalswiththelowestdensity.Thestandardelectrodepotentialis-3.04Vandthetheoreticalspecificcapacityis3860mAh/g.Fromthisdata,itissecondonlyto4200mAh/gofsilicon.Applicationareas:Lithium-sulfurbattery(2600wh/kg),lithium-airbattery(11680wh/kg),etc.Lithiummetalbatterieshavehighcapacityperformance,butinuse,duetothepresenceoflithiumdendrites,negativeelectrodeprecipitation,negativenegativesidereactions,whichseriouslyaffectthesafetyofthebattery,itisintheconceptualstageatthisstage.Lithium-sulfurbattery.Sulfurisalsoaverywidespreadelementinnature.Thehigherenergydensity(2600wh/kg)oflithium-sulfurbatteriesmaybethefocusofthenextgenerationoflithiumbatteryresearchanddevelopment.Lithium-airbattery.Lithium-airbatteryhasaveryhighenergydensity(11680wh/kg),whichisclosetotheenergydensityoffuel,andisenvironmentallyfriendly.Thereactionproductiswater.VI.Lithiumtitanateanodemater
What is lithium hydroxide? Introduction to the characteristics and uses of lithium hydroxide 2021-09-22
Lithiumhydroxideisasmallwhitemonocliniccrystal.Lithiumhydroxidehasaspicytasteandstrongalkalinity.Lithiumhydroxideisplacedintheair,itwillabsorbcarbondioxideandmoisture.Itisachemicalsubstancesolubleinwater.Lithiumhydroxideisslightlysolubleinethanolandinsolubleinether.Itisacorrosivesubstance.ThecharacteristicsoflithiumhydroxideLithiumhydroxideisaninorganicsubstancewiththechemicalformulaLiOHandtheEnglishnameLithiumhydroxide.Itisasmallwhitemonocliniccrystalwithaspicytaste,strongalkalinityandcorrosiveness.ThepHofa1mol/Lsolutionisabout14,pKb=-0.04.Itcanabsorbcarbondioxideandmoistureintheair,solubleinwater,slightlysolubleinethanol,andinsolubleinether.Therelativedensityis1.45,themeltingpointis471°C(anhydrous),anditdecomposesat925°C.AvailableinanhydrousandmonohydrateformsUseoflithiumhydroxideLithiumhydroxideisanimportantbasiclithiumsaltproduct.Lithium-basedgreasepreparedfromlithiumhydroxidehastheadvantagesoflongservicelife,oxidationresistance,andhightemperaturestability;lithiumhydroxidecanbeusedasadevelopingagentforspectralanalysis,Lubricant,asanadditiveforalkalinestoragebatteries,lithiumhydroxidecanincreasethestoragecapacityandprolongtheservicelifeofthebattery.Inaddition,lithiumhydroxidehasimportantapplicationsinmetallurgy,atomicenergy,chemicalreagents,aerospace,defenseindustryandotherfields.Itcanbeusedasanabsorbentforcarbondioxideandcanpurifytheairinthesubmarine.Usedtomakelithiumsaltandlithium-basedgrease,electrolyteforalkalinestoragebatteries,lithiumbromiderefrigeratorabsorbingliquid,lithiumsoap(lithiumsoap),lithiumsalt,developer,etc.orasanalyticalreagents;petroleum,chemical,lightindustry,Usedinthenuclearindustry.Whenusedinalkalinestoragebatteries,thealuminumcontentisnotmorethan0.06%,andtheleadcontentisnotmorethan0.01%.Usedasananalyticalreagent,photographicdeveloper,andalsousedinthemanufactureoflithium;itistobeusedasarawmaterialforthepreparationoflithiumcompounds.Itcanalsobeusedinmetallurgy,petroleum,glass,ceramicsandotherindustries.
Tilted graphene structure may promote the development of quantum computing 2021-09-22
Grapheneisamaterialwithextremelylowresistivity.Electronscanefficientlymigrateinthematerial,whichismuchhigherthantherateofelectronsintraditionalsemiconductorsandconductorssuchassiliconandcopper.Thismakesgrapheneveryconductive.Sincegraphenewasdiscoveredin2004,scientistshavebeenlookingforwaystoputthis2Dmaterialintouse.Becauseofitsatomicallythinstructure,coupledwithstrongelectronsandthermalconductivity,ithasshowngreatpotentialinthedevelopmentofelectronicandstoragedevices.Recently,researchersfromBrookhavenNationalLaboratory,Pennsylvaniaandotheruniversitieshavediscoveredthemovementmechanismofelectronsintwodifferentconfigurationsofdouble-layergraphene(carbonintheformofatomicthickness).Inthefuture,itmayprovidenewideasforthedevelopmentofamorepowerfulandsaferquantumcomputingplatform.Normally,computerchipsarebasedonanunderstandingofhowelectronsmoveinsemiconductors,especiallysilicon.However,thephysicalpropertiesofsiliconarereachingalimit,thatis,howsmalltransistorscanbemadeandhowmanycanbeaccommodatedonachip.Ifwecanunderstandhowelectronsmoveonasmallscaleofafewnanometersinthereducedsizeoftwo-dimensionalmaterials,itmaybepossibletounlockanotherwayofusingelectronsforquantuminformationscience.Often,whenamaterialisdesignedtothesesmallscales,reachingasizeofafewnanometers,itwillconfinetheelectronstoaspacewiththesamesizeasitsownwavelength,resultinginchangesintheoverallelectronicandopticalpropertiesofthematerial.ThisprocessiscalledItisquantumconfinement.Forthisreason,researchersusegraphenetostudytheseconfinementeffectsofelectronsandphotons(orlightparticles).Researchersuseauniquegradientalloygrowthsubstratetogrowgraphenewiththreedifferentdomainstructures:singlelayer,Benalstack,andtwisteddoublelayer.Thegraphenematerialisthentransferredtoaspecialsubstrate,allowingtheresearcherstodetecttheelectronicandopticalresonancesofthesystem.Thedetectionresultshows:theelectronmovesbackandforthatthesamefrequencyonthe2Dinterface.Intheconfiguration,thedistancebetweenthetwolayersofmaterialissignificantlyincreased,whichaffectshowelectronsmoveduetotheinteractionbetweenthelayers.Inaddition,tiltingoneofthegraphenelayersby30degreeswillalsoshifttheresonancetoalowerenergy,andtheelectronscanincreasetheinter-layerspacingmovinginit.Inthefuture,researcherswillusetiltedgraphenetomakenewdevices,andonthebasisoftheresultsofthisstudy,observehowtheadditionofdifferentmaterialstothelayeredgraphenestructureaffectsdownstreamelectronicandopticalproperties.
Online Message
图片

Contact Us

Contact Number: +86-731-52653988 E-mail: admin@hnydxny.cn
Contact Us
  • WeChat public account WeChat public account

Copyright © Hunan Yide New Energy Technology Co.,Ltd.        湘ICP备2021013290号

Copyright © Hunan Yide New Energy Technology Co.,Ltd.
湘ICP备2021013290号